Monatshefte für Chemie 107, 411-420 (1976) © by Springer-Verlag 1976

Die Schwingungsspektren einiger Pentadeuterophenylsiliciumverbindungen

Von

F. Höfler*

Institut für Anorganische Chemie, Technische Universität Graz, Österreich

(Eingegangen am 9. Oktober 1975)

Vibrational Spectra of Some Pentadeuterophenylsilicon Compounds

The vibrational spectra of $C_6D_5SiX_3$ (X = H, Cl, Br), (C_6D_5)_2SiCl₂, (C_6D_5)_3SiCl, and $Si_n(C_6D_5)_{2n}$ (n = 4, 5) are reported and assigned. The C_6H_5/C_6D_5 isotopic shifts in the lower frequency region (100–600 cm⁻¹) are used to elucidate vibrational coupling effects, which occur between silicon-phenyl and silicon-halogen or silicon-silicon modes.

Die Schwingungsspektren phenylsubstituierter Monosilane sind bereits relativ gut untersucht¹⁻⁵. Aus spektralen Korrelationen⁶ und Modellrechnungen^{7, 8} läßt sich entnehmen, daß insbesondere bei den energieärmeren Übergängen (< 600 cm⁻¹) mannigfache kinetische Kopplungseffekte wirksam sind, auf die bei einer Diskussion von Bindungsverhältnissen Rücksicht genommen werden muß. Ein bewährtes Hilfsmittel für die Erkennung von Schwingungskopplungen und somit für eine fundiertere Zuordnung besteht in der Vermessung isotop substituierter Moleküle. Erstaunlicherweise sind Perdeuterophenylsilane unseres Wissens bisher noch nicht dargestellt und spektroskopiert worden. Wir setzen im folgenden zunächst die Schwingungsspektren von C₆H₅SiH₃ und C₆D₅SiCl₃, C₆D₅SiBr₃, (C₆D₅)₂SiCl₂, (C₆D₅)₃SiCl, (C₆D₅)₈Si₄ und (C₆D₅)₁₀Si₅ in kurzgefaßter Darstellung.

Bei der Besprechung der Spektren einfacher Phenylverbindungen hat es sich eingebürgert, diese als Monosubstitutionsprodukte des Benzols aufzufassen. Mit der Vereinfachung, daß der Substituent M in

^{*} Herrn Prof. Dr. *H. Grubitsch* mit den besten Wünschen zum 70. Geburtstag gewidmet.

 C_6H_5M anfangs als einatomig angesehen wird, ergeben sich für das nun vorliegende C_{2v} -Molekül 21 ebene (11 A₁-, 10 B₁-) und 9 nicht-ebene (3 A₂-, 6 B₂-)Grundschwingungen. Zu ihrer Bezeichnung existieren in der Literatur mehrere Vorschläge⁹, darunter von *Herzberg*¹⁰ und *Whiffen*⁶. Die *Herzberg*sche Notation geht von Benzol aus und bezeichnet aus entarteten Benzolschwingungen hervorgehende Schwingungen des C_6H_5M -Moleküls mit v_n und v_n' . Die von *Whitfen* eingeführte Bezeichnung benützt Buchstaben und besitzt bei mehrfach phenylierten Verbindungen den Vorzug größerer Übersichtlichkeit.

Ein Großteil der oben klassifizierten 30 Schwingungen — 24 betrifft vorwiegend CC- und CH/CD-Bindungen und zugehörige Winkel und gibt daher zu praktisch lagenkonstanten Schwingungen mit größtenteils gleichbleibenden Intensitäten Anlaß. Nur 6 (3 A₁-, 1 B₁-, 2 B₂-) Schwingungen variieren stark mit dem Substituenten M; ihre Benennung nach *Whiffen* und ihre für M = Si schematisierten Schwingungsformen sind:

Die drei symmetrischen Schwingungen q, r und t sind überwiegend durch die Koordinaten einer Ringpulsations-, einer Ringdeformationsund einer Phenyl—M-Valenzschwingung beschreibbar. Ihre rechnerische Erfassung gelang durch Einführung eines Dreimassenmodells für eine C₆H₅-Gruppe und die Wahl geeigneter Kraftkonstanten⁸. Bei Vorliegen einer C₆D₅-Gruppe kann man analog vorgehen; in ⁸ sind dann die Masse m_Y mit 28 und die F-Elemente F₁₂ und F₂₂ mit 0,98 und 1,11 N/cm einzusetzen, die erzielten Frequenzanpassungen sind allerdings etwas schlechter.

Ist der Substituent M nicht mehr einatomig, sondern z. B. eine Si X_3 -Gruppe, so können deren innere Schwingungen mit den substituentenabhängigen Phenylschwingungen koppeln, und zwar v_s Si X_3 und δ_s Si X_3 vorwiegend mit der Schwingungsform t ("vSi—C₆H₅") sowie ρ Si X_3 mit u bzw. y. Um die SiC-Bindung einer Verbindung C₆H₅Si X_3 ist grundsätzlich eine Rotationshemmung in Form einer sechsfachen Barriere anzunehmen. Diese Frage ist bisher nur für Phenylsilan bearbeitet und dahingehend beantwortet worden, daß bei Raumtemperatur praktisch freie Rotation vorliegt⁵. Schwingungsspektren einiger Pentadeuterophenylsiliciumverbindungen 413

Phenylsilan, C₆H₅SiH₃, und Phenylsilan-d₅, C₆D₅SiH₃

Die gemessenen IR- und Raman-Spektren dieser beiden Verbindungen sind in Tab. 1 zusammengefaßt; sie stimmen im Falle von C₆H₅SiH₃ mit denen früherer Autoren^{1, 4, 5} innerhalb der Meßgenauigkeit überein. Die charakteristischen Gruppenschwingungen des Silylrestes, v_{s.as}SiH₃, $\delta_{s.as}$ SiH₃ und ρ SiH₃ (2 Komponenten) bleiben durch die Deuterierung des Phenylringes praktisch unverändert. Die Zuordnung der lagenkonstanten C₆H₅- und C₆D₅-Schwingungen a-p, s und z₁-z₅ kann sich auf vorliegende Literaturdaten¹¹⁻¹³ und auf die für CH- und CC-(R-) Schwingungen unterschiedlichen Isotopenverschiebungen stützen; die Schwingungsform w war nicht lokalisierbar. Bei der nicht-ebenen Ringdeformationsschwingung v korrelieren wir die starken IR-Banden bei 698 und 532 cm⁻¹; eine von Durig¹² vermutete geringere Verschiebung (etwa nach 574 cm⁻¹) erscheint aus Intensitätsgründen unwahrscheinlich. Die γ CD-Schwingung f wird um 625 cm⁻¹ erwartet; das IR-Spektrum zeigt in diesem Bereich nur eine eben erkennbare Schulter bei 610 cm⁻¹. Von den in Tab. 1 fettgedruckten "M-sensitiven" Banden sind die gemischten Schwingungsformen q, r und t im Raman-Spektrum an Hand von Polarisationszustand und Intensität gut erkennbar. Erwartungsgemäß weist die tiefste Bande (t) die geringste Isotopenverschiebung auf (8 cm⁻¹), ihr kommt daher am stärksten der Charakter einer Silicium-Phenyl-Valenzschwingung zu. Die Deformationsschwingung y dürfte einen Isotopeneffekt von $\approx 40 \text{ cm}^{-1}$ besitzen und daher in C₆D₅SiH₃ zufällig mit t entarten. Die Absenkung der tiefen Deformationsschwingungen u und x bei Ringdeuterierung beträgt hingegen nur 8—11 cm $^{-1}$.

Die oberhalb 500 cm⁻¹ gelegenen Frequenzen von Tab. 1 finden sich innerhalb enger Grenzen auch in allen anderen Phenyl- bzw. Pentadeuterophenyl-Siliciumverbindungen, allerdings kann es zu Änderungen ihrer relativen Intensitäten kommen. Bei mehrfacher Phenylsubstitution treten ferner geringfügige Aufspaltungen oder Verbreiterungen von Banden auf.

Phenylhalogensilane und Phenylcyclosilane

Das vorstehend beschriebene spektrale Erscheinungsbild rechtfertigt es, im folgenden vornehmlich auf die Kopplungsverhältnisse im längerwelligen Spektrenbereich einzugehen. Vollständige Spektrendaten finden sich im Exper. Teil.

Phenyltrichlorsilan ³ ist ein Beispiel dafür, wie charakteristische Frequenzlagen von Silicium—Halogen-Schwingungen durch Kopplung verschoben werden. Während in Methyltrichlorsilan ¹⁴ ν_s SiCl₃ und δ_s SiCl₃ bei 450 und 229 cm⁻¹ liegen, werden diese Schwingungsformen in Phe-

		Tabelle 1. Gru	udschwingungen 1	oon C ₆ H ₅ SiH ₃ 1	und C ₆ D ₅ SiH ₃ [c	m-1]	
C ₆ H	₅ SiH ₃	C_6D_5	SiH3*		Zu	ordnung	, ,
IR (fl.)	Raman (fl.)	IR (fl.)	Raman (fl.)	nach Whiffen	Rasse **	nach Herzberg	angenäherte Schwingungs- F'orm
3088 s		2300 vw	2302 vw	ζĄ	\mathbf{B}_{I}	v12 [′]	v CH
3071 s				$\mathbf{Z}\mathbf{Z}$	$\mathbf{A_{I}}$	V5	v CH
3055 s	3052 m, p	2286 m	2289 m, p	$\mathbf{z_1}$	A_1	۲v	v CH
3033 m		2273 m	2270 w	\mathbf{Z}_{5}	\mathbf{B}_{1}	V15	v CH
3020 m	3018 vw	$2253~{ m m}$	$2252 ext{ sh}$	z_3	$\mathbf{A_1}$	v_{15}'	v CH
2158 vs	$2157 \mathrm{~s,~p}$	2158 vs	$2158 \mathrm{ s, p}$				vasSiH3, vsSiH3
1590 w	1591 w	1552 w	1555 w^{-1}	k	\mathbf{A}_1	V16 [′]	~ R*** 0
	1567 w	1528 w	1530 vw	I	$\mathbf{B}_{\mathbf{J}}$	V16	٧R
1483 w	1484 vw	1351 vw	1351 vw	m	A_1	V13	$^{\rm v} m R$
1430 m	1430 vw	1300 s	1302 vw	n	B_1	V13	۷R
1330 w	1330 vw	1267 w		0	B1	Vg	۷R
1299 vw		1035 m	1037 w	θ	\mathbf{B}_1	V3	8 CH
1188 vvw	1187 w, p	871 w	873 m	ŝ	\mathbf{A}_1	V17	8 CH
1157 vw	1156 w	838 m		Э	$\mathbf{B_1}$	V17	8 CH
1122 8	$1117 \ w, p$	1063 s	$1065 \ m, p$	q	A_1	V12	.,vR''
1062 vvw	1064 vw	825 w		q	$\mathrm{B_{I}}$	V10	8 CH
	1027 m, p		$840 \mathrm{m}$	q	A_1	VI4	8 CH
997 vvw	998 vs, p	955 s, sh	957 vs, p	d	A_1	V ₆	$^{v}\mathrm{R}$
	985 w				B_2	77	γ CH
	940 vw	$715 { m sh}$		ч	\mathbf{A}_2	V19	$\dot{\gamma}$ CH
915 vs	930 w	915 vs	$920 \mathrm{~m, sh}$				δ_{as} , $\delta_{s}SiH_{3}$

414

F. Höfler:

920	914 vw	761 w	$762 \mathrm{~m}$	-1	B_2	۷11 [′]	γ CH
847 vvw	847 vw	676 m	$679 \mathrm{~sh}$	50	A_2	11V	γ CH
$750 \mathrm{~m}$	744 vw	610 vvw) (${ m B}_2$	V4	χ CH
698 vs		532 vs	535 w	Δ	B_2	٧ ₈	γ R
$690 \ sh$	$692 \ s, p$		$659 \ s, p$	ч	$\mathbf{A_1}$	V2	,, 8R"
678 mw	674 vw	676 m	$679 \mathrm{sh}$				
645 vs	648 vw	$649 \mathrm{~s}$					o SiH3
618 w	619 w	594 m	594 w	s	B_1	V18	8 R
$420 \ vvw$	$420 \ vw$	379		У	B_2	V19,	$\gamma m R-Si$
$387\ m$	388 s, p	379 m	$380 \ s, p$	t,	A_1	V18	", R—Si"
	388			M	$\mathbf{A_2}$	V20	$\gamma { m R}$
204 vw	$203 \ vw$		195 vw	n	\mathbf{B}_1	v_{14}'	8 R-Si
$160 \ s$	159 m		$149 \ s$	Δ	B_2	V20 [′]	γ R—Si
E *							

* Ferner IR-Banden bei 500 vvw, 574 vw.
** Lokalsymmetrie der Phenylschwingungen.
*** R = Ring.

F. Höfler:

nyltrichlorsilan durch die dazwischenliegende Schwingung t (347 cm^{-1}) auf 513 und 189 cm⁻¹ auseinandergedrängt. Eine modellhafte Berechnung der Potentialenergieverteilung ergibt, daß zur Bande bei 513 cm⁻¹ auch die Ringdeformationskoordinate r beiträgt¹⁵. Dies spiegelt sich in

Tabelle 2. Typische totalsymmetrische Schwingungen [cm⁻¹]von Phenyltrichlorsilan, Diphenyldichlorsilan, Triphenylchlorsilan und ihren
deuterierten Spezies

$C_6H_5SiCl_3$	$C_6D_5SiCl_3$	Zuordnung*
1123	1071	q
717	682	r
513	509	$v_{s}SiCl_{3}(0.66) + r(0.22) + t(0.13)$
347	343	t (,, $vSiR''$) (0,35) + v_sSiCl_3 (0,28) + r (0,25)
189	187	$\delta_{\rm s} { m SiCl}_{3} (0,73) + { m t} (0,10)$
$(C_6H_5)_2SiCl_2$	$(C_6D_5)_2SiCl_2$	Zuordnung*
1114	1059	q
697	670	r
533	527	$\nu_{\rm s} { m SiCl}_2 (0,78) + r (0,18)$
320	313	$t (.,v_sSiR_2") (0,40) + v_sSiCl_2 (0,19) + r (0,30)$
166	165	$\delta SiCl_2 (0, 86)$
105?		$\delta SiR_2 (0,86)$
$(C_6H_5)_3SiCl$	$(C_6D_5)_3SiCl$	Zuordnung*
1102	1053	q
683	657	r
542	540	vSiCl (0,87)
303	294	t (,, $v_s SiR_3$ ") (0,43) + $vSiCl$ (0,10) + r (0,30)
109?		$\delta_{\rm s} { m SiR}_3 (0,83)$

* PEV-Anteile für die $< 600 \ {\rm cm^{-1}}$ liegenden Frequenzen der ${\rm C_6H_5}$ -Verbindungen.

den Bandenverschiebungen bei d_5 -Substitution wider, die für "v_sSiCl₃" und "t" gleich groß sind (Tab. 2). Die nicht-ebene Deformationsschwingung y liegt in C₆H₅SiCl₃ höher als in C₆H₅SiH₃ (460 gegenüber 420 cm⁻¹); ihre Isotopenverschiebung ist hier störungsfrei bestimmbar und beträgt 45 cm⁻¹ (C₆D₅SiCl₃: y 415 cm⁻¹). Die in C₆D₅SiH₃ ebenfalls schlecht zu fixierende Schwingung f wird in C₆D₅SiCl₃ und C₆D₅SiBr₃ wie auch in (C₆D₅)₂SiCl₂ mit mittlerer IR-Intensität bei 629, 625 bzw. 626 cm⁻¹ aufgefunden. Schwingungsspektren einiger Pentadeuterophenylsiliciumverbindungen 417

Phenyltribromsilan und sein d_5 -Derivat ähneln in ihrem Schwingungsverhalten aus kinetischen Gründen dem Siliciumtetrabromid. Die Koordinaten für die beiden symmetrischen Gerüstschwingungen von C₆D₅SiBr₃, "vSi—C₆D₅" (t) und v_sSiBr₃, sind stark gemischt, so daß als Schwingungsformen eine Gegentakt- und eine Gleichtaktschwingung der SiC- und der SiBr-Bindungen resultieren. Die zugehörigen Banden liegen bei 453 und 238 cm⁻¹. v_{as}SiBr₃ absorbiert als stärkste IR-Bande bei 480 cm⁻¹.

In Diphenyldichlorsilan und Triphenylchlorsilan treten \mathbf{mit} der zweiten und dritten Phenylgruppe zwar zahlreiche Schwingungsfreiheitsgrade hinzu, durch zufällige Entartungen der meisten lagenkonstanten Phenylschwingungen hält sich die Vermehrung der beobachteten Banden jedoch in Grenzen³. Die substituentenabhängigen Phenylschwingungen besitzen bei mehrfacher Phenylsubstitution des Siliciums eine zur jeweiligen Hauptachse des Molekülgerüstes totalsymmetrische und eine unsymmetrische Komponente. Dies führt zu den recht typischen, mit einem Frequenzunterschied von 10-25 cm⁻¹ auftretenden Verdopplungen der zu den Schwingungsformen q und r gehörigen Banden. Bei der Schwingungsform t ist die Aufspaltung in $v_s SiR_n$ und $v_{as} SiR_n$ (n = 2, 3) kopplungsbedingt größer. Die Valenzschwingungen $\nu_s SiR_n$ und $\nu_{as} SiR_n$ werden im folgenden durch die Benennungen t und t' unterschieden*.

Die Isotopendaten der totalsymmetrischen Gerüstschwingungen (Tab. 2) weisen in Diphenyldichlorsilan ähnliche Kopplungsbeeinflussungen wie in Phenyltrichlorsilan nach. In Triphenylchlorsilan ist vSiCl nur wenig verkoppelt; die Isotopenverschiebung der Schwingung t ist hier überraschend klein (Tab. 2). Die gegenüber den Methylderivaten (CH₃)₂SiCl₂¹⁶ und (CH₃)₃SiCl¹⁷ erhöhten Lagen der symmetrischen SiCl-Valenzschwingungen in den Phenylverbindungen basieren zum Teil auch auf etwas größeren SiCl-Valenzkraftkonstanten in den letzteren.

Den beiden zwischen 400 und 500 cm⁻¹ liegenden Banden von $(C_6H_5)_2SiCl_2$ (481, 438 cm⁻¹) und $(C_6H_5)_3SiCl$ (499, 426 cm⁻¹) werden meist die Schwingungsformen y und t' zugeordnet. Bei jeder von der (sehr unwahrscheinlichen) koplanaren Anordnung abweichenden Stellung der Phenylgruppen sind die genannten Schwingungsformen jedoch zu Kopplung befähigt. Der gegenüber $C_6H_5SiCl_3$ geringe Isotopeneffekt von y bzw. die nahezu gleichen Isotopenverschiebungen von y und t, liefern hiezu einen experimentellen Hinweis $[(C_6D_5)_2SiCl_2 461, 417 \text{ cm}^{-1'} (C_6D_5)_3SiCl 473, 414 \text{ cm}^{-1}]$. Die niedrigfrequenten Deformationsschwingungen u ($R_2SiCl_2 248/235$, $R_3SiCl 241/230 \text{ cm}^{-1}$) und x ($R_2SiCl_2 213/$

^{*} Es sei erwähnt, daß die Bezeichnungen
t und t' in der Literatur zuweilen vertauscht verwendet werden.

203, R₃SiCl 210/198 sowie 176/165 cm⁻¹) weisen die erwarteten C₆H₅/C₆D₅-Isotopenverschiebungen auf. Die zweite Komponente von u ist meist sehr wenig intensiv. Besonders schwierig ist die Zuordnung der Gerüstdeformationsschwingungen δ SiR_n, die sicherlich unter 170 cm⁻¹ liegen und in sehr unübersichtlichen Kopplungsbeziehungen mit u, x und y stehen können. Die in Tab. 2 angegebenen Deformationsfrequenzen können noch nicht als gesichert angesehen werden.

Als Beispiel für größere perphenylierte Systeme seien einige Ergebnisse über die ringförmigen Verbindungen Oktaphenylcyclotetrasilan und Dekaphenylcyclopentasilan angeführt. Ihre Schwingungsspektren sind oberhalb 600 cm⁻¹ praktisch identisch und auch den bisher behandelten Spektren sehr ähnlich^{18, 19}, im längerwelligen Bereich sind mehrere typische Unterschiede feststellbar²⁰. Das größte Interesse gilt hier den Valenzschwingungen des jeweiligen Siliciumringes, von denen sich insbesondere die totalsymmetrische Schwingungsform mit Ringpulsationscharakter durch eine hohe Intensität im Raman-Spektrum ausweisen sollte. Aus der Spektroskopie substituierter Polysilanketten ist bekannt²¹, daß die SiSi-Valenzschwingungen in perphenylierten Verbindungen durch Kopplung mit Si-Phenyl-Schwingungen (t, r) oberhalb 500 cm⁻¹ liegen, d. h. wesentlich höher als in permethylierten Derivaten. Isocyclische Silane zeigen nach den bisherigen Erfahrungen ein ähnliches Frequenzbild wie lineare Ketten²². Als Si-Ringpulsationsschwingungen von $Si_4(C_6H_5)_8$ und $Si_5(C_6H_5)_{10}$ werden somit die starken Raman-Linien bei 545 bzw. 517 cm⁻¹ angesehen²⁰. Sie besitzen eine der Schwingungsform entsprechende relativ große Isotopenverschiebung und liegen in Si₄(C₆D₅)₈ und Si₅(C₆D₅)₁₀ bei 524 bzw. 500 cm⁻¹. Unterhalb 500 cm⁻¹ folgen die partiell verkoppelten y- und t'-Schwingungen, die in den Ringen naturgemäß in mehreren Komponenten auftreten können. Bei den deuterierten Derivaten überlagern sich einige Banden, zudem machen sich Intensitätsänderungen bemerkbar.

So besitzt $Si_4(C_6H_5)_8$ zwischen 500 und 400 cm⁻¹ drei schwache, aber charakteristische Raman-Linien (486, 453, 430 cm⁻¹)²⁰, $Si_4(C_6D_5)_8$ hingegen eine starke (458 cm⁻¹) und eine sehr schwache Linie (400 cm⁻¹). Das Raman-Spektrum von $Si_5(C_6H_5)_{10}$ weist hier eine schwache Bande (442 cm⁻¹) auf, die in $Si_5(C_6D_5)_{10}$ nicht mehr erkennbar ist. In den Bereich von 400—300 cm⁻¹ fallen Schwingungen vom Typ t, die zu einigen typischen IR-Banden Anlaß geben [$Si_4(C_6H_5)_8$ 383 w, 330 s, $Si_4(C_6D_5)_8$ 320 s; $Si_5(C_6H_5)_{10}$ 371 w, 343 s, 328 m, $Si_5(C_6D_5)_{10}$ 367 w, 333 m, 314 m]. Für die totalsymmetrische Komponente von t, die wie die Ringpulsation beim Übergang von Vierer- zum Fünferring absinken sollte, kommt in $Si_4(C_6H_5)_8$ die Raman-Linie bei 184 cm⁻¹, in $Si_5(C_6H_5)_{10}$ die Raman-Linie bei 162 cm⁻¹ in Frage; die Isotopenverschiebung beträgt 15 bzw. 8 cm⁻¹. Schwingungsspektren einiger Pentadeuterophenylsiliciumverbindungen 419

Zusammenfassend sei von der Feststellung ausgegangen, daß die Phenylgruppe aus vielerlei Gründen einen der wichtigsten Substituenten in der Siliciumchemie darstellt. Die Schwingungsspektren der Phenylsilane werden durch Kopplungseffekte geprägt, die vielfach zu Frequenzverschiebungen anderer Molekülschwingungen führen. Die Spektroskopie C_6D_5 -substituierter Verbindungen vermag so manchen Beitrag zum Verständnis des Schwingungsverhaltens zu leisten und bisher nicht beachtete Kopplungsbeziehungen aufzuzeigen. Dies kann für spezifische Zuordnungsprobleme von Bedeutung sein. Bei größeren, hochphenylierten Molekülen lassen sich summarische Zuordnungen zwar nicht umgehen, jedoch durch die gemessenen Isotopenverschiebungen besser absichern.

Dank

Für die Überlassung von Personal- und Sachmitteln (Projekt-Nr. 1589) sei dem Fonds zur Förderung der wissenschaftlichen Forschung (Wien) gedankt.

Experimenteller Teil*

Die Verbindungen $(C_6D_5)_n SiCl_{4-n}$ wurden aus SiCl₄ und entsprechenden Mengen C_6D_5MgCl hergestellt, $C_6D_5SiBr_3$ aus SiBr₄ und C_6D_5MgBr . $C_6D_5SiH_3$ wurde durch Hydrierung von reinem $C_6D_5SiBr_3$ mit LiAlH₄ in äther. Lösung in 73% Ausb. erhalten. Die Cyclisierung von $(C_6D_5)_2SiCl_2$ zu Si₄(C_6D_5)₈ und Si₅(C_6D_5)₁₀ erfolgte mit Li in *THF*; zur Trennung der beiden Ringverbindungen wurde, wie üblich, ihre unterschiedliche Löslichkeit in Benzol herangezogen. Die Feinreinigung von Si₄(C_6D_5)₈ wurde über eine Soxhlet-Extraktion mit Toluol, jene von Si₅(C_6D_5)₁₀ durch Umkristallisieren aus Essigester vorgenommen.

Schwingungsspektren $[cm^{-1}]$:

 $\rm C_6D_5SiCl_3\colon IR$ 2300 sh, 2290 w, 2281 m, 2263 w, 1553 m, 1529 w, 1347 w, 1303 s, 1269 w, 1071 s, 1033 w, 957 m, 872 vw, 841 s, 831 m, 757 w, 682 s, 629 m, 602 s, 581 vs, 534 s, 510 s, 415 m, 344 w. Raman 1071 w, p, 958 vs, p, 509 m, p, 343 s, p, 187 m, p.

 $(C_6D_5)_2SiCl_2\colon$ IR 2303 sh, 2291 w, 2281 m, 2262 w, 1557 m, 1530 w, 1381 vw, 1350 w, 1303 s, 1270 vw, 1071 s, 1059 m, 1031 w, 956 m, 874 vw, 842 s, 829 m, 756 w, 683 m, 662 m, 626 w, 594 m, 564 s, 528 s, 520 vs, 481 sh, 461 s, 417 w. Raman 1555 m, 1530 w, 1343 vw, 1308 vw, 1195 vw, 1059 s, p, 959 vs, p, 880 m, 844 m, 757 w, 670 m, p, 596 w, 527 m, p, 313 vs, p, 234 s, 203 m, 165 s, p.

 $(C_6 D_5)_3 SiCl:$ IR (Nujol) 1055 s; 680 m, 651 m, 631 w, 594 m, 540 m, 525 s, 473 vs, 414 vw. Raman 1053 m, 961 vs, 880 m, 845 m, 760 w, 657 m, 596 w, 532 w, b, 294 m, 227 s, 197 m, 163 m.

 $\rm C_6D_5SiBr_3\colon$ IR 2289 w, 2278 m, 2260 w, 1646 vw, 1617 vw, 1577 vw, 1564 vw, 1552 m, 1528 w, 1452 vw, 1345 w, 1302 s, 1269 w, 1162 vw, 1058 s, 1029 w, 954 m, 873 vw, 841 s, 829 m, 754 w, 671 s, 625 w, 592 m, 538 s, 480 vs, b, 453 s, 402 vw, 382 vw, 239 sh. Raman 1061 m, p, 955 s, p, 874 w, 841 w, 593 vw, 453 vw, 238 vs, p, 135 s, 108 m.

^{*} Unter Mitarbeit von Dr. E. Brandstätter und Ing. W. Veigl.

 $\rm Si_4(C_6D_5)_8\colon IR$ (Nujol) 2295 vw, 2281 w, 2271 m, 2266 sh, 2254 vw, 2240 w, 1549 vw, 1523 w, 1343 w, 1301 s, 1264 m, 1046 s, 1030 m, 991 w, 955 s, 874 w, 839 s, 826 w, 750 vw, 663 vw, 658 w, 628 vw, 594 w, 539 vs, 513 vw, 440 m, 421 s, 415 vs, 320 s. Raman 2294 sh, 2283 m, 2269 w, 2253 vw, 1549 s, 1525 w, 1345 vw, 1302 w, 1267 vw, 1043 s, 956 vs, 878 w, 839 m, 752 w, 662 mw, 630 vw, 594 m, 546 m, 524 s, 459 m, 400 w, 341 w, 227 s, 185 s, 169 vs, 72 sh.

 $\rm Si_5(C_6D_5)_{10}\colon IR$ (Nujol) 2282 w, 2267 m, 2250 sh, 1348 w, 1300 s, 1264 m, 1043 s, 1029 m, 955 s, 875 w, 837 vs, 825 m, 750 vw, 687 vw, 662 w, 630 w, 593 w, 537 vs, 501 w, 454 sh, 430 s, 421 s, 415 sh, 402 sh, 373 vw, 367 w, 332 m, 313 m. Raman 1041 s, 957 vs, 878 w, 841 m, 750 m, 659 m, 631 w, 594 m, 547 m, 500 s, 459 w, 424 sh, 408 m, 230 s, 183 sh, 171 m, 154 vs.

Literatur

- ¹ H. Kriegsmann und K. H. Schowtka, Z. physik. Chem. [Leipzig] **209**, 261 (1958).
- ² A. L. Smith, Spectrochim. Acta 16, 87 (1960).
- ³ A. L. Smith, Spectrochim. Acta 23 A, 1075 (1967).
- ⁴ A. L. Smith, Spectrochim. Acta 24 A, 695 (1968).
- ⁵ J. R. Durig, K. L. Hellams und J. H. Mulligan, Spectrochim. Acta 28 A, 1039 (1972).
- ⁶ D. H. Whitten, J. Chem. Soc. 1956, 1350.
- ⁷ E. W. Schmid, J. Brandmüller und G. Nonnenmacher, Z. Elektrochem. Ber. Bunsenges. phys. Chem. **64**, 726 (1960).
- ⁸ H.J. Becher und F. Höfler, Spectrochim. Acta 25 A, 1703 (1969).
- ⁹ C. V. Stephenson, W. C. Coburn und W. S. Wilcox, Spectrochim. Acta 17, 933 (1961).
- ¹⁰ G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules. New York: Van Nostrand. 1945.
- ¹¹ T. R. Nanney, R. T. Bailey und E. R. Lippincott, Spectrochim. Acta 21, 1495 (1965).
- ¹² J. R. Durig und C. W. Sink, Spectrochim. Acta 24 A, 575 (1968).
- ¹³ J. R. Durig, C. W. Sink und J. B. Turner, Spectrochim. Acta 26 A, 557 (1970).
- ¹⁴ A. L. Smith, J. Chem. Phys. 21, 1997 (1953).
- ¹⁵ F. Höfler, Mh. Chem. im Druck.
- ¹⁶ H. Kriegsmann, Z. Elektrochem. Ber. Bunsenges. phys. Chem. 62, 1033 (1958).
- ¹⁷ F. Höfler, Z. Naturforsch. 27 a, 760 (1972) und darin zitierte Literatur.
- ¹⁸ H. Gilman und G. L. Schwebke, J. Amer. Chem. Soc. 86, 2693 (1964).
- ¹⁹ M. M'Hirsi und M. Brini, Bull. Soc. Chim. Fr. 1968, 1509.
- ²⁰ E. Hengge und F. Lunzer, Mh. Chem. 107, 371 (1976).
- ²¹ F. Höfler, Mh. Chem. 104, 694 (1973).
- ²² F. Höfler, Ber. Bunsenges. phys. Chem. 78, 1246 (1974).

Korrespondenz und Sonderdrucke: Prof. Dr. F. Höfler Institut für Anorganische Chemie Abteilung für Spektrochemie Technische Universität Graz Stremayrgasse 16 A-8010 Graz Österreich